Study of magnetic excitations of spin chain material Tb₃RuO₇ to which staggered internal magnetic fields are applied

M. $HASE^A$, K. Nawa^B, D. Okuyama^{B,C}, T. J. Sato^B, S. Asai^D, T. Masuda^D

ANIMS, BIMRAM, Tohoku Univ., CKEK, DISSP-NSL, Univ. of Tokyo

The magnetic structure of Tb₃RuO₇ is unique [1]. We carried out inelastic neutron scattering (INS) experiments on Tb₃RuO₇ powder using 4G GPTAS to obtain magnetic excitations.

We observed the crystal-field excitations of Tb³⁺ ions at $\omega > 13$ meV and the spin-wave excitations at $\omega < 8$ meV. Figure 1 depicts neutron scattering intensity $I(Q,\omega)$ at 2.4 K (a) and 20 K (b). We can see excitations at $\omega < 8$ meV and only low Q, indicating that the excitations are not crystal-field excitations. Dispersions of the excitations seem to exist at 2.4 K (< $T_{\rm N}$ = 17 K), whereas those become blurred at 20 K. Therefore, the excitations are spin-wave excitations. The excitation energy at 2.4 K seems lowest at around Q = 1.25 Å⁻¹ that is close to the position of the largest magnetic reflection $(Q = 1.22 \text{ Å}^{-1})$ [1]. The largest magnetic reflection is generated by ordered Tb magnetic moments. Magnetic reflections by Tb moments are much larger than those by Ru moments. The energy of the spin-wave excitations is proportional to magnitude of interaction between magnetic moments and that of magnetic moments. We infer that the large Tb moments can generate the excitations up to 8 meV. Accordingly, we consider that the spinwave excitations mainly originate in Tb moments.

A model based on ferromagnetic (FM) spin chains may be explainable for the INS results of the Tb₃RuO₇ powder. Q = 1.22 Å⁻¹ corresponds to $Q_{1D} = 2\pi/d$. The value of *d* is evaluated to be 5.15 Å. FM interactions are expected between Tb3 and Tb5 moments and between Tb4 and Tb6 moments in the direction nearly parallel to the *c* axis. The Tb3-Tb5 and Tb4-Tb6 lengths are 5.81 and 4.76 Å, respectively, and the average is 5.28 Å. Unlike AFM chains, the intensity of the dynamical structure factor [*S* (Q_{1D}, ω)] is independent of Q_{1D} in FM chains. Therefore, the spin-wave excitations are visible in wide *Q* and ω ranges in powder-averaged intensity like the results shown in Fig. 1(a).

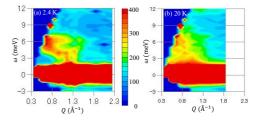


Fig. 1. $I(Q,\omega)$ of Tb3RuO7 powder at 2.4 K (a) and 20 K (b). The final neutron energy is Ef = 13.7 meV.

Accordingly, a model based on FM spin chains may be able to explain the INS results of the Tb₃RuO₇ powder.

[1] M. Hase, A. Dönni, and V. Yu. Pomjakushin, Phys. Rev B 104, 214430 (2021).