Magnetic structure at lowest temperatures of exotic valence-ordered YbPd

A. Mitsuda^A, T. Yokomakura^A, K. Ohoyama^B

^ADept. of Physics, Kyushu Univ., ^BIbaraki Univ.,

YbPd, which crystallizes in the cubic CsCltype structure at room temperature, exhibits commensurate valence order with a tetragonal symmetry below $T_2=105$ K though it has metallic electrical resistivity at all temperatures. The valence order is intriguing since most of valence order occurs in semi-metallic or semiconducting materials. The valence order structure is characterized by alternate stacking of Yb^{3+} and $Yb^{2.6+}$ layers (*c*-planes) along the *c*axis. The coexistence of the integral and fractional valences is also curious. The only Yb³⁺ layers have localized magnetic moments and exhibit magnetic order below $T_3=1.9$ K. Recently, we have clarified that the magnetic structure at T=0.59K is sinusoidal with the Yb³⁺ magnetic moments parallel to the *a*-axis, with their amplitude of $0.3\mu_{\rm B}$, and $k=(0.080\ 0$ 0.32)[1]. The amplitude is smaller than that expected for the basis of the crystalline-electricfield ground state, which is suggestive of the Kondo effect of the magnetic Yb³⁺ due to sufficient conduction electrons. In addition, the incommensurate magnetic structure implies a magnetic phase transition to a commensurate one at lower temperatures. A first-order phase transition, whose mechanism remains unknown, has been reported at $T_4=0.5$ K. Thus, the YbPd system has attracted much attention due to its complex and exotic valence and magnetic properties despite a simple cubic structure. We focus on the incommensurate-commensurate magnetic phase transition at 0.5 K since the lowest-temperature magnetic structure is certainly simple and reflected by the valence and magnetic properties. In the present study, we carried out neutron diffraction (ND) of a single crystal of YbPd using T1-1 spectrometer and a ³He refrigerator. The wavelength of neutrons of 2.459Å was selected. To observe difference in propagation vector \boldsymbol{k} of the magnetic structure between $T > T_4$ and $T < T_4$, we performed ω scanning (rocking curve) and ω -2 θ scanning.

Figure 1 shows rocking curves of the YbPd single crystal at around (0.080 0 0.32) taken at T=0.3K, 0.7K, and 3.0K. Since there exists no peaks at T=3.0K, the peaks at T=0.3K and 0.7K are ascribed to the magnetic order. In addition, the peak position is shifted through the phase transition at $T_4=0.5$ K, which implies change of propagation vector k of the magnetic structure. The inset of Fig. 1 depicts the peak positions in the reciprocal-lattice space with axes of a^*-c^* . Such behaviors are also found in the other satellite peaks. However, intensities of these satellite peaks are too weak to conduct magnetic structure refinements. Besides, the estimated kvector at T=0.3K is inconsistent with a commensurate magnetic structure.

[1] K. Oyama *et al.*, J. Phys. Soc. Jpn. **87**, 114705 (2018).

Fig. 1. Rocking curves of magnetic reflection of YbPd at T=0.3K, 0.7K, and 3.0K. There exists substantial difference in k-vector between T=0.3K and 0.7 K. The inset depicts the peak positions at T=0.3K and 0.7K in the reciprocallattice space with axes of a^*-c^* .