Magnetic frustration in the ABC6-type ordered alloy Pt-Mn

M. Takahashi A , T. Sakakura B , H. Kimura C

^AFaculty of Pure and Applied Sciences, University of Tsukuba, ^BCROSS, ^CTohoku Univ. IMRAM

Pt-Mn alloys form the ABC₆-type atomic ordered structure with Fm-3m symmetry for Mn concentration just between $12 \sim 15$ at%^[1]. In the ABC₆-type atomic order, Mn atoms form fcc structure and magnetic moments order to longranged type-III antiferromagnetic structure characterized by a propagation wave vector k =(1, 1/2, 0) below $T_N \sim 20$ K^[2]. Above T_N up to around $4T_{\rm N}$, magnetic diffuse scattering appears at an incommensurate wave vector $\mathbf{k} = (1, \delta, 0)$, where δ gradually shifts close to the commensurate value 1/2 as temperature decreases to $T_{\rm N}$. Quite similar magnetic behavior has been observed in the magnetic scattering of the cubic pyrite magnetic semiconductor MnS₂^[3]. Detailed studies of the incommensurate magnetic scattering in MnS_2 have revealed that the value of δ jumps abruptly to the commensurate 1/2 at $T_{\rm N}$. Recently, the structure of MnS₂ was reexamined using very high resolution synchrotron X-ray diffraction, and symmetry lowering from Fm-3m to Pbca due to a very subtle lattice distortion was observed below $T_{N}^{[4]}$. It is greatly expected that the type-III antiferromagnetic order is formed through a common mechanism of the incommensurate-commensurate lock-in triggered by a spin-lattice transition coupling. То ensure that the type-III antiferromagnetic order in Pt-Mn allovs is also formed through the incommensuratecommensurate lock-in transition, temperature dependence of the magnetic scattering was investigated thoroughly using four-circle neutron diffractometer FONDER installed at T22 port in JRR-3. A cylindrical single crystal of Pt_{85.6}Mn_{14.4} with the size of about 10 mm height and diameter has been measured. Figure 1 shows temperature dependance of the peak positions and intensities of the incommensurate diffuse scattering. The peak positions deviates from 1/2above T_N , but the deviations are very small (~

0.01), and above $2T_{\rm N}$, it is difficult to derive accurate values because the broadening of the diffuse scattering becomes quite pronounced. Further study for measurements with much high statistics is necessary.

[1] M. Takahashi, T. Sembiring, M. Yashima, T. Shishido and K. Ohshima: J. Phys. Soc. Jpn. 71, 681 (2002).

[2]M. Takahashi, T. Sembiring, Y. Noda, T. Shishido and K. Ohshima: Phys. Rev. B 70, 14431(2004).

[3]T. Chattopadhyay, T. Bruckel and P. Burlet: Phys. Rev. B 44, 7394(1991).

[4]S. A. J Kimber and T. Chatterji: J. Phys. Condens. Matter 27, 226003 (2015).

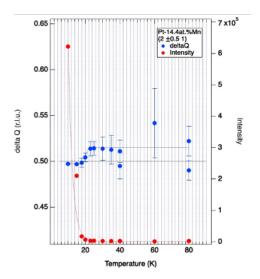


Fig. 1. Temperature dependance of peak positions and intensities of the diffuse scattering above $T_{\rm N}$.