Study on the magnetic dynamics of the Shastry-Sutherland lattice antiferromagnet Pr₂Ga₂BeO₇

Jie Ma^A, Mingfang Shu^A, H. Kikuchi ^B, T. Masuda ^B

^A Shanghai Jiao Tong University, ^B The University of Tokyo

Materials that exhibit the Shastry-Sutherland lattice (SSL) are of interest due to their potential to host quantum spin liquid (QSL) states. The Pr₂Ga₂BeO₇, comprising the frustrated SSL of Pr³⁺ moments, attracts attention as possible OSL candidates. We performed heat capacity measurements at different magnetic fields, indicating that there is no long-range magnetic order down to 0.3 K at 0 T. The fit to the 0T data below 2 K yields $\alpha = 2.075$. Such a quasiquadratic behavior would be consistent with a Dirac QSL state in which a $C_m \sim T^2$ behavior is expected by the Dirac nodes. Moreover, the plateau-like behavior in relaxation rate λ_{ZF} vs T obtained by the MuSR measurement has also been observed in several other OSL compounds. The zero-field thermal conductivity (at T < 0.3K) of Pr₂Ga₂BeO₇ can be fitted by $\kappa/T = \kappa_0/T + \kappa_0/T$ bT, where these two terms represent the contributions from itinerant gapless fermionic excitations and acoustic phonons, respectively. The linear fitting of κ/T to $T \rightarrow 0$ for H // a and H // c gives the residual values of $\kappa_0/T \sim 0.0105$ W/K²m and 0.0095 W/K²m, respectively. Notably, these values are large enough to be accurately detected by the high-level measurement. The non-zero residual linear term immediately implies that the mobile fermionic excitations from the ground state are gapless, and this is consistent with the results of the specific heat measurements. We are motivated by these interesting properties to conduct more detailed research on this system. To obtain the dynamic spectra of this system, Pr₂Ga₂BeO₇ single crystal has been measured at HODACA, JRR-3 recently, which will help us to reveal the complex interaction in Pr₂Ga₂BeO₇ and provide vital links between macroscopic properties and microscopic mechanism.

Two pieces of samples were attached on an aluminum sheet and co-aligned in the (0KL) scattering plane. The measurements were carried out at 0.7 K with a fixed final neutron energy, $E_f = 3.636$ meV. As shown in Figure 1a, the elastic neutron scattering data in the (0KL) plane measured at 0.7 K exhibits no magnetic Bragg peaks and again confirms the lack of longrange magnetic order in Pr₂Ga₂BeO₇. The INS spectrum measured at 0.7 K is presented in Fig. 1b and (c) as the spectral intensity along the high-symmetry momentum directions R₁-Z₁-R₂- X_1 - R_3 and Z_2 - Γ_1 - X_1 - Γ_2 in energy-momentum (E-Q) space. The main observation is that the spectral intensity is smeared in the whole Brillouin zone but with a gapless feature. Such gapless excitation supports the gapless QSL state in Pr₂Ga₂BeO₇. Moreover, the largest intensity is found near the Z_1 point. Based on the data, we can confirm the lack of long-range magnetic order and the gapless feature in Pr₂Ga₂BeO₇. Such gapless excitation supports the gapless QSL state in Pr₂Ga₂BeO₇, which is consistent with the macroscopic results.

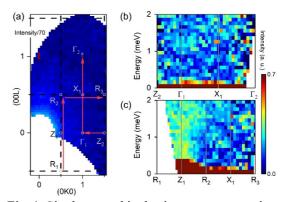


Fig. 1. Single-crystal inelastic neutron scattering results for Pr₂Ga₂BeO₇. **a**, Elastic magnetic scattering in the 0KL plane, the black dashed lines represent the Brillouin zone boundaries. The gray hollow circles represent high symmetry points R₁, Z₁, R₂, X₁, R₃, Z₂, Γ_1 and Γ_2 marked in (a). **b** and **c**, Spin-excitation spectra along high symmetry momentum directions R₁-Z₁-R₂-X₁-R₃ and Z₂- Γ_1 -X₁- Γ_2 , respectively.