T. Taniguchi

IMR, Tohoku Univ.

Recently, the exploration of materials exhibiting quantum criticality has been actively attracted. Near quantum critical points, the emergence of exotic quantum phases due to large spin fluctuations can occur. However, a quantum criticality often observed under high pressure or high magnetic fields.

Recently, we have been studying YbCu₄Ni [1], which exhibits quantum criticality at zero magnetic field and ambient pressure, and YbCu₄Au [2], which shows quantum criticality at 1 T. By powder neutron diffraction experiments at HERMES, we found that the crystal structure of YbCu₄Ni has site mixing, a

structure different from what had been previously proposed in Yb1-4-1 family. Thus, we performed same powder diffraction experiments on YbCu₄Au to confirm the crystal structure.

The sample was synthesized by the method described in reference [5]. The obtained single crystals were crushed to obtain total of 2 g. The powder was sealed in a vanadium cell with helium gas. The experiments were performed at the T1-3 HERMES beamline using a ⁴He refrigerator and cooled down to 3 K.

Figure 1 shows the powder neutron diffraction pattern of YbCu₄Au at 3 K. We performed Rietveld analysis and determined the crystal structure as shown in the inset. The crystal parameters are listed in Table I. This structure is different from that of YbCu₄Ni.

[1] K. Osato, T. Taniguchi* *et al.*, Phys. Rev. B. **109**, 024435 (2024).
[2] T. Taniguchi *et al.*, submitted

Fig. 1. Powder neutron diffraction patterns of YbCu₄Au at HERMES [2].

Table I. Crystal parameters of YbCu₄Au.

atom	site	х	у	Z	
Yb	4a	0	0	0	
Cu	16e	0.62364 0.623640.62364			
Au	4c	1/4	1/4	1/4	