Antiferromagnetic state of Heusler alloy Ru_{2-x}Fe_xCrSi

I. Shigeta^A, H. Aoshima^A, K. Fuchizaki^B, M. Hiroi^A, Y.Nambu^C

A_{Kagoshima Univ.}, B_{Ehime Univ.}, C_{Tohoku Univ}

The first-principles band calculations predicted that Ru_{2-x}Fe_xCrSi is a new half-metallic Heusler alloy insensitive to crystalline disorder [1]. This insensitivity is noteworthy because the spin polarization of well-known half-metallic Heusler alloys, such as Co₂MnSi and NiMnSb, is sensitive to crystal disorder. Our success in synthesizing polycrystalline Ru_{2-r}Fe_rCrSi samples by arc-melting has led us to investigate their physical properties [2]. With regard to the end material Ru2CrSi, a clear peak indicating an antiferromagnetic (AFM) transition was observed at a specific heat $C_{\rm p}(T)$ of ~14 K. Partial element substitution of Ru by Fe in Ru₂CrSi seems to cause the sudden elimination of AFM order. For Ru_{1.9}Fe_{0.1}CrSi, for example, no anomaly in $C_p(T)$ was observed at any temperatures. As far as the specific heat measurements are concerned, we can conclude that an AFM transition occurs at $T_N \sim 14$ K only in Ru₂CrSi.

In this study, we performed powder neutron diffraction experiments to determine the AFM structure as well as the chemical ordering of the crystal structure at low temperatures in Ru₂CrSi and Ru_{1.9}Fe_{0.1}CrSi. The experiments have been performed using a powder diffractometer, HERMES, installed in T1-3 at Japanese Research Reactor 3 (JRR-3) in JAEA. A powdered sample (approximately 7 grams) was loaded into a 6 mm diameter vanadium cell, and then mounted in a cryostat equipped with a GM refrigerator. Powder diffraction patterns were recorded in the range of 4 K to 300 K.

New peaks attributed to the AFM state were observed in diffraction patterns of Ru₂CrSi below $T_N \sim 14$ K. Figure 1(a) shows the difference between the diffraction patterns observed at 4 K and 50 K for Ru₂CrSi, indicating that the AFM peak appeared at low temperatures below $T_N \sim 14$ K. Figure 1(b) represents the difference between the diffraction patterns at 4 K and 50 K for Ru_{1.9}Fe_{0.1}CrSi. Based on the results of Figs. 1(a) and 1(b), we expected that the structure had fcc type-2 AFM order; the magnetic moments were ferromagnetically aligned within 111 planes with adjacent planes coupled antiferromagnetically. However, we found the AFM peak splitting at (1/2 1/2 1/2) only for Ru₂CrSi in Fig. 1(a), due to the reduction of symmetry of the magnetic or crystallographic structure. Magnetic and crystallographic structure analysis is now in progress using the Rietveld refinement technique.

- S. Mizutani *et al.*, Mater. Trans. 47 (2006) 25.
- [2] K. Matsuda *et al.*, J. Phys. Condens. Matter 17 (2005) 588; 18 (2006) 1837(E).

Fig. 1. Difference between the neutron powder diffraction patterns at 4 K and 50 K for (a) Ru₂CrSi and (b) Ru_{1.9}Fe_{0.1}CrSi, showing the appearance of AFM peaks at low temperatures.