High tunability of helimagnetic phases to uniaxial stress in EuAl₄

M. $\mathrm{Gen}^{A,B},$ H. $\mathrm{Saito}^A,$ R. $\mathrm{Takagi}^{A,C},$ S. $\mathrm{Seki}^C,$ T. $\mathrm{Nakajima}^{A,B},$ T. Airma^B

^AISSP, Univ. of Tokyo, ^BRIKEN, CEMS, ^CDepartment of Applied Physics, University of Tokyo

The centrosymmetric tetragonal itinerant magnet EuAl₄ has garnered increasing attention as a platform for various intriguing physical phenomena, such as the emergence of charge density wave (CDW) [1] and magnetic skyrmions [2]. In zero field, a multi-step phase transition occurs from the paramagnetic phase to the double-Q vortex phase (VII), double-Q meron/antimeron phase (VI), and single-Q spiral phases (V and I) as the temperature decreases. During this process, the Q-vector changes from $\mathbf{Q} = (0.085, \pm 0.085, 0)$ in phases VI and VII to $\mathbf{Q} = (0.17, 0, 0)$ in phase V, and eventually $\mathbf{Q} = (0.194, 0, 0)$ in phase I at 5 K. Furthermore, the phase transition from phase VI to V accompanies a tetragonal-to-orthorhombic structural transition characterized by a B_{1g} -type distortion of ~0.2%, highlighting the importance of spin-lattice coupling. Our previous resonant x-ray scattering experiment revealed that the magnetic modulation propagates along the elongated b-axis in phases I and V, as shown in Fig. 1(a) [3]. These characteristics suggest the potential for controlling the versatile magnetic phases in EuAl₄ using uniaxial stress.

To investigate this, we performed singlecrystal neutron scattering experiments under applied uniaxial stress. The experiments were carried out using a triple-axis spectrometer at PONTA(5G) in JRR-3. The sample with the dimension of 2.0×1.8×0.5 mm³ was mounted in a clamp-type uniaxial-stress cell, with the (H, 0, 0)L) horizontal scattering plane, as depicted in Fig. 1(b). Compressive stress was applied along the [010] direction. Based on the relationship between the **Q** vector and lattice distortion [Fig. 1(a)], we expected the **Q** vector to align within the scattering plane under uniaxial stress in this geometry. The spectrometer was operated in the two-axis mode, with an incident neutron beam energy of 30.5 meV. The sample was cooled to 2 K using an orange cryostat.

Figure 1(c) summarizes the zero-field magnetic phase diagram under various strengths of uniaxial stress, σ . The data at 0 MPa, 20 MPa, and 50 MPa were obtained in 2023. In 2024, we additionally performed the experiments at 80 MPa. As the stress increases, a systematic increase in the q value in phase I, as well as an increase in the transition temperature between phases V (or I) and VI, was observed. Notably, phases I and V coexist at $\sigma = 20$ MPa, and phase V disappears at $\sigma = 50$ MPa. Eventually, phase I persists up to 14.6 K at $\sigma = 80$ MPa, highlighting the high sensitivity of the magnetic phase transition against uniaxial stress.

- [1] A. Nakamura *et al.*, J. Phys. Soc. Jpn. **84**, 124711 (2015).
- [2] R. Takagi et al., Nat. Commun. 13, 1472 (2022).
- [3] M. Gen et al., Phys. Rev. B 107, L020410 (2023).

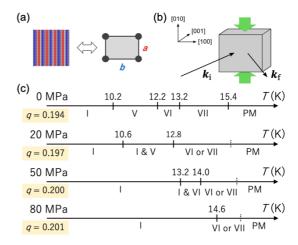


Fig. 1. (a) Relationship between the magnetic structure and orthorhombic lattice distortion in the single-**Q** spiral phases (I and V) [3]. (b) Geometry of the neutron scattering experiments under uniaxial stress. (c) Stress dependence of the magnetic phase diagram of EuAl₄ in zero field revealed in this study.