M. Takahashi^A, K. Nawa^B and K. Kinjo^B

Faculty of Pure and Applied Sciences, University of Tsukuba^A, IMRAM, Tohoku University^B

Pt_{0.86}Mn_{0.14} forms the ABC₆-type atomic ordered structure which has so far been reported only in the binary alloys of Pt-Mn and Pt-Cu, as well as in the ternary alloy CuMnPt₆. In the ordered structure, Mn atom locates at 4a site of the space grope $Fm\bar{3}m$ and ordered magnetically to type-III antiferromagnetic structure below $T_{\rm N} = 20K^{[1]}$, which is characterized by a propagation wave vector of $k = (1 \pm 1/2)$ 0). Above $T_{\rm N}$, magnetic diffuse scattering was observed at around $(1 \pm 1/2 \ 0)$ up to $4T_{\rm N}$ with several incommensurate peaks at $k = (1 \pm \delta \ 0)$ in the measurement at a disk-chopper-type spectrometer AMAT-ERAS in J-PARC. In order to elucidate the origin of the magnetic diffuse scattering above $T_{\rm N}$, we have investigated the detailed temperature dependence of the magnetic reflections in $Pt_{0.86}Mn_{0.14}$ by using a general-purpose triple axis spectrometer GPTAS in JRR-3. In the measurement, the spectrometer was operated in a three-axis mode with a wavelength of 2.663Å by using pyrolytic graphite (002) reflections and a shown in fig.1, multiple peaks (Scattering Research: clearly observed in the result at Experimental Reports 30 (2024) compared to the previous meas performed AMATERAS. The tem dependance of these peaks indicate they converge to the $(1 \pm 1/2 \ 0)$ below $T_{\rm N}$. This behavior suggests the presence of multi-Q short-range magnetic ordering above $T_{\rm N}$, which can be attributed to geometrical frustration inherent in the

M. Takahashi, T. Sembiring, Y. Noda,
T. Shishido and K. Ohshima: Phys. Rev.
B 70 (2004) 14431.

face-centered cubic lattice.

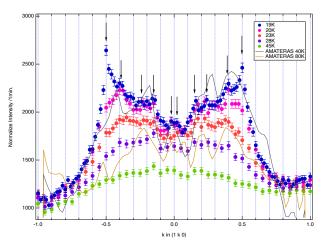


Fig.1: Elastic magnetic scattering of $Pt_{0.86}Mn_{0.14}$ around $(1\pm1/2\ 0)$ positions at various temperatures. The arrows indicate the peaks corresponding to multi-Q magnetic ordering, while solid lines represent the elastic intensity profiles measured at 40 K and 80 K in the previous measurement at AMATERAS.

Fig.2: Temperature dependance of the observed peak positions δ at $(1 \pm \delta 0)$.